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AN INVESTIGATION OF A DEFORMING ENERGY-ABSORPTION 

SYSTEM FOR SPACE -VEHICLE LANDINGS 

By Robert W .  Warner, Robert M. Sorenson, 
and Arthur J. Kaskey 
Ames Research Center 

SUMMARY 

A deforming system f o r  protect ing a space vehicle during a landing impact 
i s  described and experimentally evaluated. The impact energy i s  absorbed 
mostly by t h e  cu t t ing  of p l a s t i c  foam pads, but p a r t i a l l y  by t h e  buckling of 
t h e i r  tubular  support s t ruc ture .  Expandable foam i s  chosen because of i t s  
advantages i n  packaging and i n  reducing penetrat ion of t h e  landing surface. 
The foam and i t s  supporting s t ruc ture  a r e  u t i l i z e d  i n  such a way as t o  benef i t  
t ip-over  s t a b i l i t y  and over-al l  e f f ic iency  of energy absorption (energy 
absorbed divided by t h e  weight of the  e n t i r e  energy absorbing system), with p r i -  
o r i t y  given t o  t h e  l a t t e r .  The r e s u l t i n g  system, when compared with another 
proposed system, has exceptionally good over -a l l  efficiency, namely, 54'3 
f t - lb / lb ,  but has l e s s  s a t i s f a c t o r y  s t a b i l i t y ,  with t h e  model vehicle r e s t r i c t e d  
t o  a 5' ground slope and near ly  v e r t i c a l  impacts. 

INTRODUCTION 

Landing has always been one of t h e  most dangerous aspects of f l i g h t ,  and 
a so-called s o f t  space-fl ight landing w i l l  probably be no exception. Landing 
problems w i l l  include energy absorption, decelerat ion loads, and vehicle t i p -  
over because a space vehicle i s  l i k e l y  t o  land with a subs tan t ia l  ve loc i ty  on 
a rough, s lanted surface.  A large ve loc i ty  w i l l  obviously have t o  be t o l e r -  
a ted a t  touchdown for parachute landings on planets .  Even a vehicle capable 
of hovering near the  landing surface may experience a s igni f icant  impact i f  
the  rocket engines f a i l ,  or have t o  be turned off prematurely t o  prevent t h e  
exhaust from disf iguring the  landing area.  I n  addition, a cer ta in  amount of 
control e r r o r  i s  expected during the  landing phase. For these reasons, it i s  
generally accepted t h a t  energy absorbing systems w i l l  be used f o r  so-called 
"sof t"  landings of space vehicles ( r e f s .  1 and 2 ) .  

Because a space-landing system w i l l  general ly  be used only once, a 
controlled f a i l u r e  of the  system can be u t i l i z e d .  The s implici ty  and r e s u l t -  
ing r e l i a b i l i t y  of a f a i l u r e  system a r e  p a r t i c u l a r l y  appropriate f o r  the  large 
temperature gradients and hard vacuum of the  space environment. 

Space-landing systems have already received considerable a t ten t ion ,  as 
indicated i n  references 3 t o  33. I n  t h e  present paper, a t t e n t i o n  w i l l  be 
r e s t r i c t e d  t o  a p a r t i c u l a r  system. 
choice of materials f o r  t h e  present system i s  based primarily on c e r t a i n  

I n  contrast  t o  references 3 t o  33, t h e  
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requirements ( c a l l e d  "supplementary" herein)  other than t ip-over s t a b i l i t y  and 
a high over-al l  e f f ic iency  of energy absorption. The supplementary require- 
ments a r e  r e l a t e d  t o  packaging, penetrat ion of the  landing surface, and a sta- 
b l e  blast-off  configuration. The primary purpose of t h e  present paper i s  t o  
show, experimentally, what can be done on t ip-over and over-al l  eff ic iency 
with a r e s t r i c t e d  amount of development of such a system. It i s  intended, 
thereby, t o  provide information on t h e  f e a s i b i l i t y  of incorporating the  pres- 
ent  "supplementary" requirements i n  a f i n a l  design choice. 

The "supplementarytt requirements considered herein a re  described f i rs t .  
Then t h e  model vehicle  based la rge ly  on those requirements i s  detailed,  
together with the  apparatus and t e s t  technique for evaluating the  model. The 
manner i n  which the  model w a s  developed i s  described next, followed by r e s u l t s  
on e f f ic iency  and t ip-over  s t a b i l i t y .  

The model vehicle  descr ipt ion and par t  of t h e  r e s u l t s  given herein have 
been presented b r i e f l y  i n  reference 33 as one means of considering needed 
materials improvements f o r  space-landing systems. I n  t h e  present paper, the 
issue of mater ia ls  improvements i s  not emphasized; and the  model descr ipt ion 
and r e s u l t s  a r e  much more complete than i n  reference 33. 
surface and nonvert ical  landings, t h e  present r e s u l t s  have not been published 
elsewhere. 

With respect t o  hard- 

NOTATION 

v v e r t i c a l  component of impact veloci ty ,  f t / s e c  

CL ground slope, deg 

P impact f l igh t -pa th  angle above the  horizontal ,  deg 

7 over-al l  eff ic iency of energy absorption (energy absorbed divided by 
the  t o t a l  weight of the  energy absorbing system), f t - l b / l b  

foam mechanism ef f ic iency  (energy absorbed by t h e  foam divided by the " weight of t h e  foam), f t - l b / l b  

METHODS, FSSULTS, ANE DISCUSSION 

Requirements f o r  Landing System 

An energy absorbing system should be required t o  absorb a specif ied 
impact energy with high over -a l l  efficiency, 7 ,  within a c e r t a i n  accelerat ion 
l i m i t ,  and t o  prevent the  vehicle from t ipping over as a r e s u l t  of unsymmetri- 
c a l  landing conditions. These a r e  the  two basic  requirements. For t h e  
present, however, a t t e n t i o n  i s  r e s t r i c t e d  t o  the following supplementary 
requirements: The landing system should 
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(1) 
(2)  
(3 )  

Requirement (1) suggests t h e  consideration of p l a s t i c  foam as the  primary 
energy absorber s ince it should be foamable i n  f l i g h t  a f t e r  ear th  e x i t .  This 
would r e s u l t  i n  a low volume of mater ia l  i n  t h e  energy absorbing system during 
ea r th  e x i t .  An e f f i c i e n t  d i s t r i b u t i o n  of such a small volume would then 
require  a minimum of f a i r i n g  material f o r  passage through t h e  atmosphere. 
This could r e s u l t  i n  a s ign i f i can t  weight saving. 
polystyrene foam w a s  used i n  t h e  present experiments, r a the r  than  the  more 
e a s i l y  foamable polyurethane, only because a su i tab le  polystyrene happened t o  
be more readi ly  ava i lab le  .) 

Occupy a small packaging volume 
Prevent excessive penetrat ion of the  landing surface 
Provide a s t ab le  f i r i n g  platform f o r  r e tu rn  blast-off  

(It should be noted t h a t  

Requirement (2 )  derives from t h e  controversy over the  depth of low 
strength lunar c rus t  (as i n  refs .  34-48) . Since fu ture  unmanned probes may 
leave the  controversy unresolved, it would seem necessary t o  accommodate 
requirement (2 )  as f a r  as possible within weight l imi ta t ions .  P l a s t i c  foam 
does t h i s  excel lent ly  because it permits a long sinking stroke and a large 
bearing area without causing a ma,jor packaging problem. Both a long stroke 
and a, large bearing area tend t o  reduce the  chance of penetrating t h e  lunar 
c rus t  t o  such a depth as t o  hamper t h e  exploration of the  surface or t he  re turn  
bl-ast-off.  Requirements (1) and ( 2 )  have led t o  the  choice of p l a s t i c  foam t o  
absorb most of' t h e  prescribed impact energy i n  the  present I-  :imple. 

The t h i r d  requirement has l ed  t o  the  consideration of a three-legged 
landing system. Wi-th such a system, no mechanical cranking of t h e  legs  i s  
required t o  provide b las t -of f  s t a b i l i t y  a f t e r  landing. 

Model, Apparatus, and Experimental Technique 

A model or an energy absorbing system based la rge ly  on t h e  above 
supplementary requirements i;. s h s m  i n  f igure  1. This i s  the  f i n a l  version 
evolved from a s e r i e s  of tes - t s  :7c.d s tudi-s  and i s  shown undeformed. Three sk i -  
pole type cu t t e r s  r e s t  on three  holloweu-out pieces of polystyrene foam, and 
the  cu t t ing  of t he  foam absorbs the  la rges t  pa r t  of t he  impact energy. The 
welded, tubular,  compression members f a i l  near t h e  end of t he  foam cut t ing  
s t roke t o  absorb addi t iona l  energy i n  buckling. These members a re  curved t o  
assure consis tent  upward buckling - 

Figure 2 shows a complete model f o r  v e r t i c a l  impact af ter  a landing i n  
which both t h e  cu t t ing  and t h e  buckling have taken place.  The near ly  s o l i d  
wooden body of t he  model contains no f lu id ,  s o  the  po ten t i a l ly  important e f f ec t  
of f u e l  sloshing on t ip-over  s t a b i l i t y  i s  not evaluated. The weight of t he  
model body, including t h e  f i n s ,  which provide s t a b i l i t y  during the  v e r t i c a l  
drops, i s  33.4 pounds. The weight of t he  energy absorbing system, including 
everything below t h e  t h r u s t  r ing,  i s  1.68 pounds, or 4.8 percent of t h e  com- 
bined model body and landing system weight. 

A p ic ture  of a model f o r  nonvert ical  impact p r io r  t o  re lease  i s  shown i n  
f igu re  3 .  The model i s  i d e n t i c a l  t o  t h a t  of f i gu re  2, except t h a t  t he  f i n s  
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have been removed and runners have been added on e i t h e r  s i d e  of t h e  model. 
The runners permit t h e  model t o  s l i d e  down t h e  ra i ls  shown i n  f i g u r e  3. The 
model weight, center-of-gravity location, and moment of i n e r t i a  a r e  i d e n t i c a l  
f o r  v e r t i c a l  and nonvert ical  impacts. 
model parameters a r e  given i n  f igure  4. 

Numerical values for these and other 

The model body, with i t s  finned or unfinned nose boom, cannot be regarded 
as a scaled model of any prototype vehicle.  
however, it can be considered as crudely representat ive of t h e  Lunar Excursion 
Module, or LEM, c lass  ( see  appendix A f o r  sca l ing) .  

A t  a scal ing of roughly 10 t o  1, 

A port ion of t h e  experimental apparatus and f a c i l i t y  i s  shown i n  each of 

I n  a c t u a l  operation, the accelerometers 
f igures  1, 2, and 3. I n  f i g u r e  1, t h r e e  p iezoe lec t r ic  accelerometers a r e  
shown a t  r i g h t  angles t o  each other.  
a r e  connected t o  t h e i r  amplification and read-out systems by coaxial  cables 
l5O f e e t  long. 

The t e s t  f a c i l i t y  f o r  v e r t i c a l  impacts i s  shown i n  f igure  2. The back- 
board i s  l ined  t o  measure impact v e l o c i t i e s  with t h e  a i d  of high-speed motion 
pictures .  The dust on which the  model r e s t s  i n  f i g u r e  2 i s  a 1-1/2-inch-thick 
layer  of crushed b a s a l t ,  (For s ieve r e s u l t s  on t h e  basalt, given by t h e  sup- 
p l i e r  and t h e  U. s. Geological Survey, see f i g .  5.)  The platform which holds 
the  dust can be s e t  a t  various ground slopes although it i s  shown horizontal .  
For a smooth, hard surface, a heavy s t e e l  sheet, 0.12 inch thick,  i s  placed on 
t o p  of the  dust. 

The platform i n  f igure  3 i s  i d e n t i c a l  t o  t h a t  i n  f igure  2. The f a c i l i t y  

The s t r i p e s  on t h e  rails, together with high-speed motion pic-  
i n  f igure  3 i s  adapted t o  nonvertical  impacts by t h e  s lan ted  ra i l s  which a r e  
30 f e e t  long. 
t u r e s  and the  pointer  attached t o  the model, serve t o  measure r e s u l t a n t  veloc- 
i t y .  The model a t t i t u d e  i s  e s s e n t i a l l y  v e r t i c a l  a t  impact, and i t s  p i tch  r a t e  
e s s e n t i a l l y  zero. Additional d e t a i l s  on t h e  apparatus and f a c i l i t y ,  together 
with a discussion of various measurement errors ,  a r e  given i n  appendix B. 

Much of the  experimental technique i s  suggested by f igures  2 and 3. When 
the  b a s a l t  dust surface i s  used, t h e  surface i s  prepared by dis turbing t h e  
dust and then loosely s t r i k i n g  it off leve l .  
face.  

This ensures a repeatable sur- 
( I n  f i g .  3, t h e  surface has not yet  been prepared.) 

For t h e  v e r t i c a l  impacts, the  t e s t  technique i s  simply t o  h o i s t  the  model 
of f igure  2 by means of a rope attached t o  an overhead elevator .  
model has been oriented with one pad pointing d i r e c t l y  u p h i l l  or downhill, t h e  
rope i s  cut.  If t h e  model t i p s  over or t h e  accelerometers read higher than a 
specif ied l i m i t ,  the  ground slope or the  drop height i s  lowered f o r  the  next 
drop. 
a t ion  and t ip-over i s  reached. 

When t h e  

Otherwise, t h e  slope or height i s  r a i s e d  u n t i l  t h e  boundary on acceler-  

For t h e  nonvert ical  impacts, t h e  ra i ls  i n  f igure  3 a r e  s e t  a t  a given 
angle t o  e s t a b l i s h  a given f l i g h t  path. 
adjusted s o  t h a t  t h e  f i rs t  foam t o  h i t  t h e  landing surface i s  1 inch above t h e  
surface when t h e  model runners leave t h e  rails .  

Then t h e  landing platform height i s  

The model i s  then pulled a 
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c e r t a i n  distance up t h e  r a i l s  by a rope pul ley and released by cu t t ing  t h e  
rope. The distance up t h e  ra i l s  and t h e  surface slope a r e  varied t o  e s t a b l i s h  
t h e  same type of boundary found f o r  the v e r t i c a l  impacts. I n  contrast  t o  f i g -  
ure  3, the  rope i s  generally i n  t h e  plane of the  model runners, and t h i s  plane 
contains t h e  model center of gravi ty .  

Development Procedure 

It has been pointed out t h a t  the  p l a s t i c  foam mater ia l  and the  three-  
legged configuration were selected because of t h e  supplementary requirements 
l i s t e d  e a r l i e r .  After these se lec t ions  were made, however, a development pro- 
gram w a s  i n i t i a t e d  t o  achieve a high over-al l  e f f ic iency  of energy absorption, 
7, and a t  l e a s t  a fa i r  degree of t ip-over s t a b i l i t y .  

Because it i s  more d i f f i c u l t  t o  control  v e r t i c a l  ve loc i ty  than horizontal  
veloci ty  i n  a vacuum environment with a strong gravi ty  f i e l d ,  g rea te r  p r i o r i t y  
w a s  given t o  a high 7 f o r  v e r t i c a l l y  symmetrical landings than t o  good s ta-  
b i l i t y  f o r  unsymmetrical landings. Hence, i n  contrast  t o  many of t h e  models 
i n  references 3 t o  33, t h e  frame supporting the  primary energy absorber (foam, 
i n  the present case) w a s  located e n t i r e l y  below t h e  model body, as seen i n  f i g -  
ures 1 t o  3; and the  outreach of t h e  frame beyond t h e  body perimeter w a s  r e l a -  
t i v e l y  low. The low outreach tended t o  improve 7 by l imi t ing  t h e  frame 
weight. The locat ion of the  frame below the  body, r a t h e r  than alongside it, 
permitted the  compression members t o  be designed f o r  a long buckling stroke 
a f t e r  the  foam stroke i s  near ly  completed. The buckling benefited 7 p a r t l y  
by increasing t h e  energy absorption but mostly by decreasing t h e  frame weight. 
A n  addi t ional  advantage of t h e  r e l a t i v e l y  t a l l  energy absorbing system w a s  i t s  
tendency t o  s a t i s f y  one of t h e  supplementary requirements, namely, prevention 
of excessive penetration of t h e  landing surface.  

With respect t o  t ip-over  s t a b i l i t y ,  however, t h e  t a l l  landing system and 
r e l a t i v e l y  low outreach were expected t o  be harmful, and the i n i t i a l  t e s t  
r e s u l t s  indicated how harmful they were. The o r i g i n a l  model t ipped over a t  
l e s s  than 3 O  ground slope when dropped from any s i g n i f i c a n t  height.  
considered unsatisfactory,  and the remainder of the  development program w a s  
devoted t o  improving t ip-over  s t a b i l i t y  while t h e  r e s u l t i n g  losses  were 
held as low as possible.  Specif ical ly ,  the  weight of t h e  energy absorbing 
system w a s  held constant s ince a weight r a t i o  of 0.048 w a s  considered an upper 
l i m i t ,  and t h e  7 losses  were confined t o  losses  i n  energy absorption. 

This w a s  

7 

The or ig ina l  landing system w a s  qui te  similar t o  t h a t  of f igure  1 except 
t h a t  t h e  posit ions of t h e  present "ski-pole" c u t t e r s  were occupied by c i r c u l a r  
aluminum disks which crushed s o l i d  p l a s t i c  foam. 
t h e  maximum energy from t h e  foam, it had been an t ic ipa ted  t h a t  t h e  bounce-back 
associated with crushing would be harmful t o  t ip-over s t a b i l i t y .  Hence, when 
the  t ip-over r e s u l t s  proved unsatisfactory,  t h e  next s t e p  w a s  t o  absorb energy 
by t h e  cu t t ing  of s o l i d  foam. This change maintained the  weight r a t i o  of 
0.048 and could r e a d i l y  be made. 

Although crushing absorbed 

I n  auxi l ia ry  drop t e s t s  with s ingle  c u t t e r s ,  the  foam cut t ing  reduced 
bounce-back by a f a c t o r  ranging from 4 t o  8 depending on t h e  impact veloci ty  
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and t h e  nature of t h e  foam and t h e  c u t t e r s .  The e f fec t  of such a bounce-back 
reduction on t ip-over  s t a b i l i t y  i s  i l l u s t r a t e d  by the  q u a l i t a t i v e  r e s u l t  
curves i n  sketch ( a ) ,  The areas  between the  curves and the axes represent  

values of v e r t i c a l  impact velocity,  V, and 
ground slope, a, f o r  which t h e  model does not 

v t i p  over. Curve B i s  f o r  the  cu t t ing  of s o l i d  
foam and i s  c l e a r l y  superior t o  curve A, which 
i s  f o r  t h e  crushing of s o l i d  foam. The two 
curves have t h e  same a value f o r  V = 0 
because t h e  foam height w a s  the  same f o r  t h i s  
comparison. Both curves show a decreasing 
as V increases because t h e  higher forces  
associated with the  higher v e l o c i t i e s  give 

t h e  landing surface.  

The cu t t ing  of a given piece of foam must obviously occur a t  a lower load 
than t h e  crushing of a similar piece, and t h i s  reduces t h e  foam mechanism 
efficiency, vM, by a f a c t o r  of roughly 3 between t h e  i n i t i a l  and f i n a l  config- 
urations.  
f u l l y  match t h e  foam and i t s  support s t ruc ture .  
types of cu t te rs ,  including several  s i z e s  of honeycomb, were t r i e d  before a 
combination w a s  found t h a t  would always cut and not crush, yet do so  a t  a rea-  
sonably high load, ( i .e . ,  a reasonably high 7 ) .  I n  addition, t h e  c u t t e r s  
and t h e i r  supports were arranged i n  such a way as t o  minimize the  attachment 
s t ruc ture  and t o  u t i l i z e  i n  the cu t t ing  operation not only t h e  complete cut-  
t e r s  but a l s o  t h e  attachments, t h e  tension members, and the  compression mem- 
bers.  (See f i g s .  1, 2, and 4. 
decreased bounce-back but a l s o  increased the cu t t ing  load. ) 

a higher bounce-back of t h e  landing system and 
Sketch ( a )  

The primary s t e p  taken t o  hold t h e  l o s s  t o  t h i s  value w a s  t o  care- 
Many types of foam and many 

M- 

The s lan ted  barbs i n  f i g s .  1 and 4(b) not only 

In  an attempt t o  improve s t a b i l i t y  s t i l l  fur ther ,  the or ig ina l ly  s o l i d  
foam w a s  hollowed out and lengthened, with t h e  foam volume held constant, t o  
hollow cylinders as shown i n  f igure  4 ( c ) .  The foam area t o  be cut w a s  actu- 
a l l y  tapered s o  t h a t  it approached a maximum a t  t h e  bottom of t h e  foam. 

The foam tapering gave a load-displacement curve f o r  t h e  cu t t ing  as shown 
i n  sketch ( b ) .  

Load 

The high slope near zero load i n  sketch ( b )  resu l ted  f r o m t h e  
near ly  uniform cut t ing  ac t ion  of the  circu- 
lar  r i m  of t h e  c u t t e r s  and provided a la rge  
par t  of t h e  energy area under the  load- 
displacement curve. The longer and lower 
slope a t  higher loads resul ted from t h e  
spokes of t h e  c u t t e r s  cut t ing i n t o  more and 
more foam as t h e  displacement increased. 
This long and low slope permitted " h i l l  
accommodation" a t  r e l a t i v e l y  low loads. 
( " H i l l  accommodation" means t h a t  t h e  t h r e e  

Displacement  foam pads ad jus t  t o  t h e  ground slope with 
l i t t l e  deviation of the  vehicle axis from 

( b )  w a s  made the  buckling load of t h e  frame 
i n  order t o  t r i g g e r  buckling, 

I 
I 

~ --I 
0 

Sketch ( b )  t h e  v e r t i c a l . )  The maximum load i n  sketch 
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I 

v going from curve B t o  curve C because t h e  
center of grav i ty  of t h e  system has been 
ra i sed  by the  longer foam pads. The two 
curves intersected,  however, because the 
h i l l  accomodation mentioned above became 
t h e  dominant f a c t o r  a t  t h e  higher impact 
ve loc i t ies ;  and the  r e s u l t i n g  boundary C 
i s  nearly uniformly r e s t r i c t i v e  i n  CL 

Results and Discussion 

Whether such an 7 value i s  high or l o w  depends on a comparison with 1 competitive systems from references 3 t o  33. A system i s  considered 

Results on energy absorption and t ip-over s t a b i l i t y  f o r  the f i n a l  model 
configuration ( f i g .  1) a r e  presented i n  f igure  6 and show envelopes extending 
from the  a a x i s  t o  t h e  V axis, where a i s  the  landing surface slope i n  
degrees and V t h e  v e r t i c a l  impact veloci ty  i n  f e e t  per second. Within t h e  
envelope, the model does not t i p  over, and the  r e s u l t a n t  accelerat ion does not 
exceed 50 ear th  g. This f i g u r e  sca les  t o  5 ear th  g f o r  a prototype with 10 t o  
1 scaling, as shown i n  equation ( A 6 ) .  This accelerat ion l i m i t  seems t o  be sat- 
i s f a c t o r y  since reference 29 suggests a range from 4 t o  8 g .  

A l l  t h e  data i n  f igure  6 a r e  expressed i n  terms of symbols denoting 
various degrees of t ip-over s t a b i l i t y  or i n s t a b i l i t y .  The phrase "very s table"  
means the model may t i p  a l i t t l e  but r i g h t s  i t s e l f  without hes i ta t ion .  On the 
other hand, "barely s tab le"  means the  model t i p s ,  h e s i t a t e s ,  and then r i g h t s  
i t s e l f .  A designation of ' 'barely unstable" means the  model t i p s ,  hes i ta tes ,  
and then t i p s  over, while "very unstable" means t h e  model t i p s  over without 
hes i ta t ion .  

In  f i g u r e  6(a) ,  t h e  end point of t h e  s o l i d  l i n e  on t h e  a axis a t  8-1/2' 
i s  t h e  s t a b i l i t y  point when only t h e  u p h i l l  foam touches t h e  ground p r i o r  t o  
re lease  of t h e  model. 
point a t  which t h e  system goes above 50 g on a horizontal  surface.  When t h i s  
ve loc i ty  i s  squared and divided by a denominator consis t ing of 2 g times t h e  
r a t i o  of t h e  system weight t o  t h e  t o t a l  landing weight, t h a t  is, a denominator 
of 2 g (0.048), the  r e s u l t  i s  t h e  over-al l  e f f ic iency  of energy absorption, 
q, spec i f ica l ly ,  545 f t - i b / l b .  
weight or energy absorption of any mechanism f o r  foaming t h e  p l a s t i c  o r  any 
cover i n t o  which it could be foamed f o r  a f u l l - s c a l e  vehicle .  These e f f e c t s  
would probably not be of major importance.) 

The end point on the  V axis ,  a t  41  f t /sec,  i s  the  

(Note t h a t  t h i s  value does not  include t h e  
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competitive i f  it includes a frame t o  extend t h e  system outboard of t h e  land- 
ing vehicle and i f  it has been found reasonably s a t i s f a c t o r y  with respect t o  
t ip-over s t a b i l i t y  f o r  a model vehicle  somewhat s imi la r  t o  t h e  present model. 
Unfortunately, numbers from which 7 values can be found a r e  ava i lab le  only 
f o r  one such system, spec i f ica l ly ,  t h e  system described i n  references 12 and 
20. These nwnbers ind ica te  an over -a l l  e f f ic iency  approximately one-half as 
high as t h e  present value of 345 f t - l b / l b .  The 11 comparison j u s t  given sug- 
ges ts  t h a t  t h e  present system has exceptionally good over -a l l  eff ic iency.  
comparison on t ip-over  s t a b i l i t y  w i l l  be given l a t e r . )  

(A 

The end points  j u s t  described f o r  t h e  s o l i d  l i n e  i n  f i g u r e  6(a)  determine 
the  desired s t a b i l i t y  envelope, namely, t h e  dashed rectangle.  It is  presented 
t o  i l l u s t r a t e  t h e  r e l a t i v e l y  small extent  t o  which t h e  present boundary devi- 
a t e s  from being uniformly r e s t r i c t i v e .  The lower par t  of t h e  boundary r e s u l t s  
f r o m t h e  foam cut t ing  process and has been made near ly  v e r t i c a l  by the  methods 
described e a r l i e r .  Specif ical ly ,  h i l l  accommodation predominates a t  a veloc- 
i t y  of 4 f t /sec,  with bounce-back gradually reducing the  s t a b i l i t y  a t  higher 
ve loc i t ies .  
associated with t h e  onset of frame buckling, which re leases  the  impact load 
with increasing def lec t ion  and thus reduces bounce-back. 

The s l i g h t  recovery i n  s t a b i l i t y  above 32 f t / sec ,  however, i s  

A s  a r e s u l t  of t h i s  near ly  v e r t i c a l  s t a b i l i t y  boundary, together with t h e  
foam cutting, t h e  minimum landing surface slope on the  wavy s o l i d  l i n e  i n  f i g -  
ure 6 ( a )  i s  6-1/2' f o r  a l l  but t h e  highest  ve loc i t ies ,  r a t h e r  than t h e  o r i g i -  
n a l  minimum of l e s s  than 3'. A s  might be expected, t h e  minimum surface slope 
f o r  impacts with two legs  uphi l l ,  as defined by t h e  wavy dashed l i n e  and 
flagged symbols i n  f igure  6 (a ) ,  i s  considerably higher than 6-1/2O. 

Figure 6 ( b )  contains energy and t ip-over  r e s u l t s  f o r  v e r t i c a l  impacts on 
the  s t e e l  surface described e a r l i e r .  Since t h e  end point on the  ve loc i ty  ax is  
i s  the  same as f o r  f igure  6(a) ,  the  over-al l  e f f ic iency  r e t a i n s  t h e  same high 
value. With respect  t o  t ip-over  s t a b i l i t y ,  however, t h e  minimum landing sur- 
face slope i s  reduced t o  5- l /ko i n  f igure  6 ( b ) .  This l o s s  of s t a b i l i t y  can be 
a t t r i b u t e d  t o  increased bounce-back of t h e  s t e e l  surface r e l a t i v e  t o  t h e  basall 
surface and/or t o  decreased h i l l  accomnodation by t h e  s t e e l  surface because it 
cannot be permanently indented by the  foam pads. 
apparently predominate over any benef i t  which might r e s u l t  from the  coefficieni 
of s t a t i c  f r i c t i o n ,  p, between t h e  model and the  s t e e l  being lower than t h a t  
between t h e  model and t h e  basa l t  ( spec i f ica l ly ,  p = 0.59 f o r  s t e e l ;  and 
p = 0.65 and 0.72 f o r  basa l t ,  with t h e  model imbedded l/3 inch and 1/2 inch, 
respect ively) .  

These detrimental  f a c t o r s  

It should be mentioned t h a t  t h e  present r e s u l t s  apply t o  t h e  present 
ground simulations. Because of t h e  r e l a t i v e l y  low mass and clean support of 
t h e  present platform, it seem l i k e l y  t o  produce a grea te r  bounce-back s t roke 
than the lunar surface.  Hence, the  present r e s u l t s  are considered conservative 

Results f o r  nonvert ical  impacts on crushed basa l t  a r e  presented i n  
f igure  6 ( c ) .  
of t h e  horizontal  component of velocity,  and the data  are f o r  one leg  u p h i l l .  
Hence these r e s u l t s  represent the most c r i t i c a l  condition considered herein 
f o r  t ip-over s t a b i l i t y  on the  b a s a l t  surface.  

The downhill slope of the  landing platform i s  i n  the  d i rec t ion  
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The r e s u l t s  of f igure  6 ( c )  a r e  given f o r  a nominal impact f l igh t -pa th  
angle, P ,  of 85O above the  horizontal .  Actual angles a r e  given i n  parentheses 
near the  data points.  
f a i r i n g  of t h e  curve i n  t h i s  f igure,  see the  end.of appendix B. Note t h a t  t h e  
s tab le  region f o r  i s  considerably smaller than t h e  s tab le  regions i n  
f igures  6 (a)  and 6 ( b ) ,  which correspond t o  P = 90'. 
t h a t  the  present combination of landing vehicle and energy absorbing system i s  
r e s t r i c t e d ,  by s t a b i l i t y  considerations, t o  near ly  v e r t i c a l  impacts. 

For a comment on t h e  s m a l l  deviations from 85' and the  

P = 85' 
Hence it i s  concluded 

By comparison, t h e  model of references 12 and 20 i s  not r e s t r i c t e d  t o  
near ly  v e r t i c a l  impacts. It can, i n  f a c t ,  accept downhill horizontal  veloci-  
t i e s  on a 5' slope i n  t h e  order of 8 t o  10 f t / s e c  over a v e r t i c a l  ve loc i ty  
range from 0 t o  1 4  f t / sec .  
while having a lower over-al l  eff ic iency,  q, than t h e  present system by a f a c -  
t o r  of 2, i s  considerably b e t t e r  with respect t o  t ip-over s t a b i l i t y .  The sys- 
tem of references 12 and 20 i s  intended t o  meet the f u l l  range of requirements 
i n  references 12 and 49 (which include a v e r t i c a l  ve loc i ty  requirement but no 
spec i f ica t ion  on q )  . 
exceed t h e  v e r t i c a l  ve loc i ty  requirement but t o  meet only one of t h e  s t a b i l i t y  
requirements, namely, t h e  spec i f ica t ion  of a 5O ground slope f o r  otherwise ver- 
t i c a l l y  symmetrical impacts; and t h i s  has been accomplished, as seen i n  f i g -  
ures 6 ( a )  and 6 ( b ) .  

Thus t h e  landing system of references 12 and 20, 

On t h e  other hand, the  present system i s  intended t o  

Although the  present c r i t e r i o n  f o r  q i s  a per fec t ly  symmetrical landing, 
it i s  of some i n t e r e s t  t o  consider a more c r i t i c a l  condition. This i s  the  case 
where t h e  impact i s  nonvert izal  with t h e  horizontal  ve loc i ty  component directed 
uphi l l ,  where t ip-over  i s  prevented by t h e  steepness of t h e  ground slope, and 
where t h e  model i s  or iented with one leg  uphi l l .  T h i s  o r ien ta t ion  provides t h e  
l e a s t  protect ion f o r  the  u p h i l l  l eg  and hence t h e  maximum l ikel ihood of the  
accelerat ion exceeding 50 g. The maximum resu l tan t  ve loc i ty  achievable with 
t h e  ex is t ing  r a i l  length w a s  35.6 f t / s e c  a t  a of 80' above t h e  horizontal ,  
and t h e  ground slope f o r  t h i s  case w a s  21°. 
not exceed 50 g. A ve loc i ty  of 35.6 f t / s e c  means t h a t  q f o r  t h e  nonvert ical  
impacts i s  a t  l e a s t  411 f t - l b / l b ,  as opposed t o  545 f t - l b / l b  f o r  the  symmetri- 
c a l  impacts. 

P 
The model accelerat ion s t i l l  did 

Thus the  present configuration i s  e f f i c i e n t  even f o r  a s l i g h t l y  nonverti- 
It i s  s i g n i f i c a n t  t h a t  t h i s  i s  s o  despi te  t h e  use c a l  impact i n t o  a 21' h i l l .  

of a r e l a t i v e l y  heavy energy absorbing mechanism having a low mechanism e f f i -  
ciency, qM. 
present system; and t h e  foam cut t ing  mechanism has an 
f t - lb / lb ,  which i s  much lover than most of t h e  mechanism e f f i c i e n c i e s  l i s t e d  
i n  reference 29. Possible e f f e c t s  of t h e  space environment and rocket exhaust 

Specif ical ly ,  t h e  foam comprises almost half  t h e  weight of t h e  
qM value of 777 

values f o r  foam crushing and foam cut t ing  a r e  considered i n  

CONCLUDING F5NARKS 

An energy absorbing system f o r  space-vehicle landings has been described 
and experimentally evaluated. P l a s t i c  foam w a s  invest igated as t h e  main energy 
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absorber because it could be expanded t o  a la rge  volume a f t e r  e x i t  f r o m t h e  
e a r t h ' s  atmosphere and thus help prevent excessive penetrat ion of the  landing 
surface without causing a major packaging problem. The system has an aluminum 
frame t o  support t h e  foam and t h r e e  legs  t o  improve b las t -of f  s t a b i l i t y  for 
t h e  re turn  f l i g h t .  

An attempt has been made t o  u t i l i z e  t h e  se lec ted  mater ia ls  so  as t o  
improve t ip-over  s t a b i l i t y  and over-al l  e f f ic iency  of energy absorption. 
o r i t y  has been given t o  efficiency, and it has been improved i n  three  ways. 
F i r s t ,  t h e  frame has been designed with r e l a t i v e l y  low outreach beyond the  
body perimeter. Secondly, the frame has been designed t o  absorb energy by 
buckling, and t h i r d ,  the  foam has been carefu l ly  matched t o  i t s  support 
s t ruc ture .  

P r i -  

The e f f ic iency  w a s  compromised p a r t i a l l y  t o  improve t ip-over s t a b i l i t y .  
The compromise consisted of absorbing energy from the  foam by cut t ing it 
instead of crushing it. This has improved s t a b i l i t y  by decreasing bounce-back 
but resu l ted  i n  a s igni f icant  e f f ic iency  loss .  S t a b i l i t y  w a s  a l s o  improved by 
adjust ing t h e  system so  t h a t  t h e  s t a b i l i t y  boundary i s  almost uniformly 
r e s t r i c t i v e  on ground slope over t h e  f u l l  range of impact v e l o c i t i e s .  This 
adjustment r e s u l t e d  i n  only a minor l o s s  of over-al l  eff ic iency.  

Despite t h e  very low mechanism ef f ic iency  of cu t t ing  t h e  foam (777 
f t - lb / lb) ,  t h e  s teps  j u s t  outl ined resu l ted  i n  an over -a l l  e f f ic iency  which i s  
considered exceptionally good, spec i f ica l ly ,  545 f t - l b / l b  . 
b i l i t y  r e s u l t s  have been l e s s  sa t i s fac tory ,  with the  vehicle  r e s t r i c t e d  t o  a 
5' ground slope and near ly  v e r t i c a l  impacts. 

The t ip-over sta- 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f , ,  Ju ly  8, 1965 
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APPENDIX A 

I 11 

SCALING 

The scal ing used herein i s  derived from two conditions: (1) t h e  model i s  
scaled geometrically r e l a t i v e  t o  t h e  prototype; and (2) t h e  model i s  made from 
t h e  same mater ia l  as t h e  prototype, which requires  i d e n t i c a l  s t r e s s e s  and 
i d e n t i c a l  mater ia l  dens i t ies .  From condition (l), with N taken as a f ixed  
number, 

where L, A, and v a r e  length, area,  and volume, respectively,  and where the  
subscr ipts  p and m stand f o r  prototype and model. From the  i d e n t i c a l  s t r e s s  
aspect of condition (2), together with equation (Al), 

where F i s  force.  From the  i d e n t i c a l  mater ia l  densi ty  aspect of condition 
(2), together  with equation (Al), 

where M i s  mass. 

An  immediate question i s  whether the  weight force,  W, i s  consis tent  with 
equation (A2). For t h i s  force, with equation (A3), 

where g i s  accelerat ion due t o  gravity.  Hence, f o r  consistency with equa- 
t i o n  (A2), it must follow t h a t  

If t h e  prototype i s  t o  land on t h e  moon and t h e  model i s  t o  be t e s t e d  on earth, 
equation (A5) requires  t h a t  N = 6 for exact scal ing of t h e  weight force.  

Other quant i t ies  follow d i r e c t l y  from equations (Al) t o  (A3) i n  
conjunction with s p e c i f i c  l a w s  of nature. For example, t h e  same development 
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yielding equation (A5) gives 

P 1  
a 
- - -  
% - N  

where a i s  accelerat ion.  Equations (A5) and (A6) serve d i f fe ren t  functions,  
with equation (A6) sca l ing  accelerat ions according t o  any number N and equa- 
t i o n  (A5) specifying N according t o  t h e  physical accelerat ions due t o  
gravi ty .  

For scal ing t h e  dimensions of veloci ty ,  V, t h e  formula f o r  constant 
acceleration, V2 = 2aS, can be used, where 
s t a n t  accelerat ion takes  place. 
(with general  length, L, special ized as S )  

S i s  t h e  dis tance over which con- 
With equations (Al) and (A6), it i s  seen t h a t  

For time scaling, another formula f o r  constant accelerat ion,  V = a t ,  can be 
used, where t i s  time. Equations (A6) and (A7) then give 

Equations (Al) through (A8) have been checked by other physical  l a w s  and r e l a -  
t i o n s  , including work-energy, impulse-momentum, torque - iner t ia ,  and s t r e s s  - 
bending moment. 

A question a r i s e s  as t o  what happens when t h e  r e s t r i c t i o n  i n  equation (A5) 
i s  l i f t e d .  F i r s t ,  i f  N i s  within a f a c t o r  of 2, say, of t h a t  determined by 
equation (A5), t h e r e  i s  no problem i n  scal ing forces  as long as the  maximum 
deceleration force i s  grea te r  than the  weight force by a f a c t o r  of, say, 20 or 
more. Secondly, with respect t o  s t a b i l i t y ,  the  model r e s u l t s  would be exact 
f o r  a prototype with 
t h a t  of t h e  ear th  r a t h e r  than 1/6. 
t o  a stronger grav i ty  force than i s  t h e  model on ear th .  The prototype is ,  
therefore,  l e s s  l i k e l y  t o  t i p  over than the  model, both with respect t o  bounce 
height and gravi ty  res tor ing  moment. I n  t h i s  sense, the  model r e s u l t s  a r e  
considered conservative as t o  s t a b i l i t y  f o r  a prototype with 

N = 10 i f  the  lunar g r a v i t a t i o n a l  accelerat ion were 1/10 
Thus t h e  prototype on the moon i s  subjected 

N = 10. 

Hence, it seems j u s t i f i e d  t o  consider N = 10 as wel l  as N = 6; and 
N = 10 comes c loser  t o  t h e  a c t u a l  Lmar Excursion Module, or LEM, for the  
model described i n  the  body of the repor t .  
ing t o  equations (Ab), (A6), and (Al), the  r e s u l t  i s  

When t h i s  model i s  scaled accord- 
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N = 6  

W = 35.08 (6)3  = 7580 lb  on ea r th  
P 

np = - 50 = 8.3 ea r th  g 
6 

dp = - l 4 O 4  (6 )  = 7.2 f t  12 

N = 10 
3 

W = 35.08 (10) = 35,080 lb on ea r th  P 

50 5 ea r th  g - 
n p - i 5 =  

d = -  14*4 (10) = 12 f t  
p 12 

where dp i s  the  diameter of t h e  prototype body and np i s  the  maximum ea r th  
load f ac to r .  

The sca l ing  of t h e  p l a s t i c  foam i s  i n i t i a l l y  troublesome because the  foam 
c e l l  diameter and t h e  model c u t t e r  thickness  a re  t h e  same order of magnitude, 
and because the  foam c e l l s  may not be appreciably l a rge r  f o r  t he  prototype. 
It may be desirable ,  then, t o  s ca l e  t h e  number of cu t t e r s  r a the r  than the  
thickness of t h e  cu t t e r s .  Then t h e  cu t t ing  force should sca le  properly, 
according t o  t h e  t o t a l  cu t t i ng  a rea  and t h i s  area could r ead i ly  be scaled 
according t o  N2, as required.  



. . 

Before each t e s t  an e l e c t r i c a l  c a l i b r a t i o n  i s  performed by replacing each 
accelerometer by a prescribed s inusoidal  voltage from a s igna l  generator.  The 
voltage l e v e l  corresponds t o  a specif ied accelerat ion.  The gain of t h e  galva- 
nometer amplif ier  i s  then adjusted t o  give t h e  la rges t  f e a s i b l e  amplitude on 
the  oscil lograph paper. This recorded s igna l  cons t i tu tes  t h e  ca l ibra t ion  f o r  
the  specif ied accelerat ion and e f f e c t i v e l y  removes the e f f e c t  of any gain d r i f t  
i n  t h e  measuring system. It would not remove t h e  e f f e c t  of deviations i n  over- 
shoot, but t h e  overshoot has been reduced t o  considerably l e s s  than 1 percent.  

APPENDIX B 

The prescribed voltage l e v e l  f o r  t h e  e l e c t r i c a l  ca l ibra t ion  w a s  obtained 
by using the  system t o  measure a known acceleration, spec i f ica l ly ,  60 g. The 
accelerometers were placed on a shake t a b l e  capable of del iver ing 60 g acceler- 
a t i o n  at  a frequency as low as 130 cps. The frequency selected f o r  the  known 
accelerat ion w a s  200 cps, as measured by a counter. The shaker displacement 
amplitude w a s  s e t  t o  de l iver  60 g a t  200 cps, t h e  amplitude being measured by 
an o p t i c a l  displacement follower as checked against  a bench micrometer. The 
gain of t h e  galvanometer amplif ier  w a s  adjusted t o  display t r a c e s  of convenient 
s i z e  on t h e  oscil lograph paper, and then t h e  gain w a s  locked. Each accelerom- 
e t e r  w a s  replaced i n  t u r n  by a s igna l  generator, and t h e  voltage l e v e l  of t h e  
generator w a s  adjusted u n t i l  the  oscil lograph t r a c e  matched the corresponding 
t r a c e  produced by t h e  shaker. This voltage l e v e l  const i tuted t h e  e l e c t r i c a l  
ca l ibra t ion .  

APPARATUS AND ERROR ESTIMALCION 

One channel of the  system for measuring accelerat ion i s  shown i n  sketch 
The de amplif ier  i s  used primarily t o  boost t h e  signal,  i t s  gain being ( a ) .  

s e t  permanently a t  100. The other two amplifiers a r e  used mainly for impedance 

Piezo- 
e l e c t r i c  a c  H Amc,Iif 

Sketch (a) 
matching. The gain of the ac amplif ier  i s  set a t  uni ty  t o  minimize the  ne t -  
work time constant and r e s u l t i n g  overshoot, and t h e  galvanometer amplif ier  
provides a smoothly adjustable  gain f o r  convenience i n  displaying a t r a c e  on 
t h e  oscil lograph paper. 

There is ,  of course, a c e r t a i n  amount of e r r o r  involved i n  the  determina- 
t i o n  and performance of t h e  e l e c t r i c a l  ca l ibra t ion ;  and t h i s  e r r o r  has been 
evaluated on t h e  basis of the various readings and meters involved. Another 
error ,  due t o  var ia t ions  from the  frequency of 200 cps, has been estimated by 
means of a frequency response with the  accelerometers mounted on the  shake 
t a b l e .  A t h i r d  e r r o r  a r i s e s  from a s l i g h t  lack of l i n e a r i t y  and has been 

14 



evaluated by comparing a 60 g frequency response with a 30 g response. 
four th  e r r o r  r e s u l t s  from t h e  estimation of a mean l i n e  through 1000 cps 
o s c i l l a t i o n s  of r e l a t i v e l y  low amplitude, which a r e  superimposed on t h e  accel-  
e ra t ion  t r a c e s  and a r e  regarded as unimportant because of t h e i r  high frequency. 

A 

t h e  model. 

Possibly as a r e s u l t  of t h i s  precaution, together  with the  locat ion of t h e  
model runners, re lease  mechanism, and center of grav i ty  i n  a s ingle  plane, t h e  
model s l i d e s  down t h e  ra i ls  without observable o s c i l l a t i o n .  I n  addition, t h e  
t ip-over  r e s u l t s  f o r  nonvert ical  impacts a r e  general ly  repeatable. Hence, t h e  
error due t o  o s c i l l a t i o n s  i s  considered smal l .  

Two possible sources of unwanted pi tching ve loc i ty  remain, however, as 

To minimize t h e  grav i ty  
t h e  model comes off t h e  rails .  These a r e  a gravi ty  moment and the  h i t t i n g  of 
t h e  ra i ls  by t h e  runners due t o  grav i ty  f r e e  f a l l .  
moment, t h e  model runners have been recessed 3/16 inch over t h e  a f t  5-1/2 
inches of t h e i r  length, as shown i n  t h e  sketch i n  f igure  4 ( a ) .  
be no gravi ty  moment a f t e r  t h e  model center of grav i ty  i s  1-1/2 inches beyond 
t h e  end of t h e  rails, and calculat ions ind ica te  a r e s u l t i n g  maximum pitching 

Hence there  can 
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When t h e  four  e r r o r  estimates j u s t  re fe r red  t o  a r e  added, the  t o t a l  i s  
This defines t h e  maximum possible accelerat ion e r ror .  When the  8 percent. 

square root  of t h e  sum of t h e  squares of t h e  individual  e r r o r s  i s  taken, with 
the  e l e c t r i c a l  ca l ibra t ion  broken i n t o  i t s  components, t h e  resu l t ing  standard 
deviation i s  3 percent. 

Another po ten t ia l  source of e r r o r  i n  t h e  over-al l  t e s t  program involves 
v a r i a t i o n  i n  t h e  energy absorbing system from model t o  model. With respect t o  
t h e  p l a s t i c  foam, however, there  could not have been much var ia t ion  since t h e  
t ip-over  r e s u l t s  below t h e  frame buckling load turned out t o  be highly repeat-  
able  i n  general. (It should be noted t h a t  t h e  maintenance of good repeatabi l -  
i t y  and minimum bounce-back required t h e  ax is  of every pad cut from every foam 
log t o  be oriented i n  a spec i f ic  d i rec t ion  r e l a t i v e  t o  t h e  log geometry.) 

Above t h e  frame buckling load, t ip-over r e p e a t a b i l i t y  could not be checked 
because of a shortage of models. For s i x  per fec t ly  symmetrical impacts, how- 
ever, t h e  maximum deviation from t h e  average buckling load w a s  7 percent. I n  
addition, frame buckling a f f e c t s  only the  extreme t o p  of the  measured s t a b i l -  
i t y  envelopes of f igure  6.  
considered t h a t  var ia t ions  i n  t h e  foam and t h e  frame could r e s u l t  i n  only minor 
e r r o r s  i n  t h e  envelopes. 

On t h e  basis of t h e  foregoing information, it i s  



veloc i ty  of 0.014 radian per second f o r  t h e  t es t  conditions reported i n  f i g -  
ure 6 ( c ) .  Such a pi tching ve loc i ty  should introduce only a negl igible  e r r o r  
i n  a t ip-over s t a b i l i t y  boundary. 

After  the  center  of g r a v i t y  i s  more than 1-1/2 inches beyond t h e  rails ,  
the  model i s  i n  a f r e e - f a l l  s t a t e ,  and t h e  3/16-inch recess, selected f o r  con- 
venience i n  model construction, i s  not deep enough t o  preclude t h e  p o s s i b i l i t y  
of t h e  a f t  end of t h e  runners t i c k i n g  the  end of t h e  rails. Calculations, how- 
ever, ind ica te  t h a t  such t i c k i n g  of the  rails takes  place only f o r  one of t h e  
data  points i n  f i g u r e  6 ( c ) .  Since t h i s  data  point represents a s t a b l e  condi- 
t ion,  there  i s  l i t t l e  e r r o r  i n  t h e  s t a b i l i t y  boundary as a r e s u l t  of r a i l  
t i ck ing .  

The model v e l o c i t i e s  f o r  the  grav i ty  moment and r a i l  t ick ing  calculat ions,  
as wel l  as t h e  i n i t i a l  f r e e - f a l l  ve loc i ty  f o r  determining the  impact speed and 
f l i g h t  path, a r e  taken from high-speed motion p ic tures  of the  model s l i d i n g  
down t h e  rails .  Distance versus time i s  p lo t ted  on t h e  basis of the s t r i p e s  
on t h e  rails, t h e  pointer  on t h e  model, and timing marks on t h e  f i lm.  The 
slope of t h e  p lo t  gives t h e  r e s u l t a n t  ve loc i ty  i n  t h e  d i rec t ion  of the  rails .  
The slope i s  determined both by graphical  estimation and by taking t h e  deriva- 
t i v e  of a least-squares parabolic f i t .  Graphical estimation i s  used when the  
graph i s  l i n e a r  over a wide range surrounding t h e  point where the  slope i s  
desired.  Otherwise, an average i s  taken between t h e  slopes determined by e s t i -  
mation and l e a s t  squares. 

For the  r e s u l t a n t  ve loc i ty  j u s t  as t h e  model goes i n t o  f r e e  f a l l ,  t h e  
average slope d i f f e r s  from those of estimation and l e a s t  squares by a maximum 
of 10 percent. Among t h e  four  remaining data  points  of f igure  6(  c )  f o r  which 
an average w a s  taken, however, t h e  maximum e r r o r  i s  2 percent. Since t h e  
veloci ty  a t  t h e  start  of f r e e  f a l l  i s  the  i n i t i a l  ve loc i ty  f o r  calculat ing t h e  
impact speed, t h a t  speed i s  considered t o  have a maximum e r r o r  of l e s s  than 
those indicated above. 
f a l l  v e r t i c a l  impacts by comparison of calculat ions and high-speed movies of 
t h e  model and a s t r i p e d  backboard. This comparison shows e s s e n t i a l l y  no 
e f f e c t  of a i r  drag on the  f r e e - f a l l  v e l o c i t i e s . )  

( A  much lower e r r o r  i s  indicated f o r  t h e  purely f r e e -  

With respect t o  t h e  f l igh t -pa th  angle f o r  nonvert ical  impacts, the 
i n i t i a l  f r e e - f a l l  v e l o c i t y  e r r o r s  j u s t  described should cause no s igni f icant  
e r rors  i n  the  predicted impact angles. Because the  model w a s  i n  f r e e  f a l l  for 
6 inches, however, those predicted angles do d i f f e r  somewhat from t h e  nominal 
f l igh t -pa th  angle of 85 , which i s  t h e  angle a t  which t h e  rails  a re  s e t .  This 
var ia t ion  causes t h e  p lo t ted  points  of f i g u r e  6 ( c )  t o  be somewhat unconserva- 
t i v e  f o r  an 83' slope. Hence, the  s t a b i l i t y  boundary i s  f a i r e d  more conserva- 
t i v e l y  than t h e  data  points,  p a r t i c u l a r l y  a t  t h e  lowest impact speeds. This 
procedure obviously causes some e r r o r  f o r  t h e  boundary. 

0 
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APPENDIX C 

AUXILIARY TESTS ON V A C m  AND .TEMPERATURE 

The experiments described i n  t h e  body of the  report  were performed at  
room temperature and pressure and hence did not account f o r  t h e  e f f e c t s  of 
foam exposure t o  t h e  space environment. A s  a p a r t i a l  check on t h e  e f f e c t  of 
t h i s  environment, p l a s t i c  foam has been t e s t e d  i n  a vacuum b e l l  jar and a t  low 
temperature. Load-deflection t e s t s  were performed on t h e  crushing and t h e  cut- 
t i n g  of foam, where the  load w a s  measured by a load c e l l  and t h e  def lec t ion  by 
a d i f f e r e n t i a l  t ransf  ormer-type transducer. 

The model f o r  t h e  crushing t e s t  w a s  a 5-1/2-inch-diameter sphere of 
I ts  load-deflection curve 
Then t h e  b e l l  jar w a s  

polystyrene foam, with a densi ty  of 1.8 lb/cu f t .  
w a s  f i r s t  found a t  room temperature and pressure. 
pumped down t o  
f o r  5 minutes. This p a r t  of the  t e s t  showed tha t  t h e  foam w i l l  not explode i n  
a vacuum. Then the  foam w a s  crushed a t  t h e  same r a t e l  as f o r  room temperature 
and pressure. The r e s u l t  w a s  a load ranging from one-half t o  one-third as 
grea t  as t h e  load f o r  room conditions, as seen i n  f igure  7. Not a l l  t h e  a i r  
had been removed f r o m t h e  foam by t h e  evacuation of t h e  b e l l  jar s ince the  
pressure went up during t h e  crushing, but enough had apparently been removed 
t o  lower t h e  load as indicated.  

mm of mercury ( t o r r )  a t  room temperature and held t h e r e  

The crushing t e s t  w a s  then repeated a t  room pressure, but th i s  time t h e  
specimen w a s  a 5-1/2-inch-diameter polystyrene sphere which had been held i n  
l i q u i d  nitrogen a t  -170' F f o r  5 minutes. 
w a s  a load-deflection curve almost i d e n t i c a l  t o  t h a t  f o r  t h e  vacuum case. C a l -  
culations ind ica te  t h e  low temperature reduced the  load r e l a t i v e  t o  room condi- 
t i o n s  by lowering t h e  a i r  pressure i n  t h e  foam c e l l s  and a l s o  by lowering the  
s t rength of t h e  p l a s t i c  material .  

The r e s u l t ,  as seen i n  f igure  7 ,  

A glance a t  the  areas under the  curves i n  f igure  7 indicates  t h a t  t h e  
energy absorbed i n  vacuum and a t  low temperature i s  approximately half  as 
great  as a t  room temperature and pressure. This f a c t  would have t o  be 
accounted f o r  i n  any design based on the  crushing of foam. 

S i m i l a r  t e s t s  were performed f o r  foam cut t ing.  The foam model w a s  t h a t  
described i n  f i g u r e  4 except t h a t  4 inches were cut off t h e  open (upper) end 
and 2 inches off t h e  outside diameter t o  make t h e  foam f i t  i n  t h e  t e s t  r i g .  

'The importance of crushing r a t e  f o r  polystyrene spheres with a densi ty  
of 1.8 lb/cu f t  w a s  es tabl ished by an e a r l i e r  t e s t  a t  room temperature and 
pressure. I n  t h i s  t e s t  t h e  s t a t i c  load a t  a given def lec t ion  of a 5-1/2-inch- 
diameter sphere w a s  found t o  be lower by a f a c t o r  of 2 than t h e  corresponding 
dynamic load when t h e  crushing r a t e  w a s  varying from 55 f t / s e c  t o  roughly half  
t h a t  value. I n  contrast ,  t h e  r a t e  e f f e c t  w a s  found t o  be r e l a t i v e l y  small i n  
reference 21 f o r  rectangular volumes of polystyrene. 



The c u t t e r  w a s  i d e n t i c a l  t o  those of f i g u r e  1 and f i g u r e  4, with a simulated 
support frame. The rim of t h e  c u t t e r  missed the  foam because of t h e  reduction 
i n  t h e  foam outside diameter. 

For t h e  vacuum case, the  model w a s  held a t  1.5X10-5 mm of mercury f o r  24 
hours before t h e  load-deflection t e s t  w a s  performed. Again t h e  b e l l  jar pres- 
sure went up during t h e  loading, indicat ing t h a t  some a i r  remained i n  the  foam, 
For t h e  low temperature case, t h e  model w a s  held i n  l i q u i d  nitrogen a t  -170' F 
f o r  approximately 3 minutes. 

Load-deflection r e s u l t s  f o r  foam cut t ing  a r e  represented by square symbls 
i n  f igures  8 and 9 f o r  vacuum and low temperature, respectively.  
lar symbols i n  these  f igures  a r e  f o r  room temperature and pressure. The small 
difference between t h e  two curves f o r  room conditions may r e s u l t  from the f a c t  
t h a t  t h e  foam reported i n  f igure  8 comes from a d i f f e r e n t  log than t h a t  i n  
f igure  9. 

The circu- 

From 0 t o  almost 2 inches def lec t ion  i n  f igures  8 and 9, the load i s  due 
almost e n t i r e l y  t o  foam cut t ing because, f o r  these  def lect ions,  the  c u t t e r s  
a r e  widely spaced i n  the  foam, and t h e  crushing by the frame i s  negl igible .  
Within t h i s  near ly  pure cu t t ing  region, t h e  loads f o r  t h e  vacuum case i n  f i g -  
ure 8 and t h e  low temperature case i n  f i g u r e  9 a r e  almost as large as t h e  cor- 
responding loads f o r  room conditions. Hence the energy l o s s  due t o  environ- 
ment i s  negl igible  f o r  cut t ing as compared t o  t h a t  f o r  crushing. 

For def lec t ion  grea te r  than 2 inches, the  load i s  p a r t l y  due t o  cu t t ing  
and p a r t l y  due t o  crushing by t h e  simulated frame members. Differences 
between f igures  8 and 9 may be due t o  d i f f e r e n t  e f f e c t s  of vacuum and tempera- 
ture ,  or they may be due t o  a coincidental  difference i n  the  breaking out of 
t h e  s ide  w a l l  of t h e  hollow foam cylinder.  

The foregoing r e s u l t s  have not, of course, included t h e  e f f e c t  of high 
temperature r e s u l t i n g  from a space environment or t h e  rocket exhaust. I n  t h i s  
connection, t h e  p l a s t i c  mater ia l  would probably have t o  be foamed i n t o  a cover 
t o  achieve t h e  required temperature and pressure f o r  foaming a dependably b r i t -  
t l e  product; and such a cover would provide some protect ion against  high tem- 
perature, or low temperature. 
foaming process a r e  beyond t h e  scope of t h e  present report . )  With respect t o  
t h e  rocket exhaust, t h e  nozzle could be made long enough s o  t h a t  t h e  exhaust 
misses the p l a s t i c  foam. 

(It should be noted t h a t  t h e  d e t a i l s  of t h e  
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